179

WWWW.arifrao.com BOARD OF INTERMEDIATE AND SECONDARY EDUCATION, MULTAN OBJECTIVE KEY FOR INTERMEDIATE ANNUAL EXAMINATION, 2021

encours.						
●Name of	Subject:	Mathematics	Session	:	2021	
Group:	1st_		Group:	2nd_	Crious	•

Q.	Paper Code	Paper Code	Paper Code	Paper Code
Nos	4191	4193	4/95	4197
1	A	C	A	B
2	D	A	Ď	C
3	\mathcal{B}	B	B	B
4	С	C	A	A
5	B	A	Ď	D
6	B	D	A	B
7	С	B	A	A
8	B	С	D	D
9	A	B	C	A
10	D	B	A	A
11	B	C	B	Ď
12	A	B	C	C
13	D	A	A	A
14	A	D	D	B
15	A	B	B	C
16	0	A	C	A
17	C	D	B	D
18	A	A	B	B
19	B	A	C	C
20	C	D ==	B	B

			J	
Q.	Paper Code	Paper Code	Paper Code	Paper Code
Nos	4A2	4194	9/98	4198
1	9	0	D	C
2	B	B	A	A
3		A	C	B
4	C	D	B	D
5	A	D	A	A
6	B	B	D	Ċ
7	D	D	B	B
8	A	C	4	A
9	C	A	B	2
10	B	B	C	B
11	A	D	D	C
12	D	A	B	\mathcal{B}
13	B	\mathcal{C}	A	C
14	ζ.	B	D	
15	B	A	\mathcal{D}	B
16	C	D	B	A
17		B	\mathcal{D}	D
18	B	C	_ C	D
19	A	B	A	\mathcal{B}
20	\mathcal{D}	C	B	D

وصول کرکے ان کا بغور مطالعہ کرلیا ہے اور ان کی روشن میں Key بنائی ہے۔ نیز سب ایگزامیز زکیلئے تفصیلی مارکنگ ہدایات/ مارکنگ سیم/Rubrics بھی تیار کر دی گئی ہیں۔

Prepared & Checked By:

Re-Checked By - - 2 (15) 14 (15) 2 - 20) 16 (15) 16 (1

INTERMEDIATE PART-II (12th CLASS)

MATHEMATICS PAPER-II

SUBJECTIVE

TIME ALLOWED: 2.30 Hours MAXIMUM MARKS: 80

NOTE: Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts. $8 \times 2 = 16$

- Determine whether the function $f(x) = \sin x + \cos x$ is even or odd. (i)
- With out finding the inverse, state domain and range of f^{-1} where $f(x) = \frac{x-1}{x-4}$ $x \neq 4$ (ii)
- $\lim_{x \to 2} \frac{x^3 8}{x^2 + x 6}$ by using algebraic techniques. (iii) Evaluate the limit
- $\lim_{x \to 0} (1+2x^2)^{\frac{1}{x^2}}$ in terms of e. Express the Limit (iv)
- Find the derivative of $(x + 4)^{\frac{1}{3}}$ by definition. (v)
- Differentiate $x^2 \frac{1}{x^2}$ w.r.t x^4 . (vi)
- If $y = \ln(x + \sqrt{x^2 + 1})$ then find $\frac{dy}{dx}$
- If $y = x^2 \cdot e^{-x}$ then find y_2
- If $x = 1 t^2$ and $y = 3t^2 2t^3$ then find $\frac{dx}{dt}$ and $\frac{dy}{dt}$
- If $f(x) = 4 x^2$, $x \in (-2, 2)$ then find interval in which f(x) is increasing or decreasing.
- Prove that $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$ (xi)
- If $y = \sin 3x$ then find y_4 (xii)

3.

 $8 \times 2 = 16$

- Using differentials find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ if $x^2 + 2y^2 = 16$ Evaluate $\int \cos 3x \sin 2x \, dx$ (i)
- (ii)
- (iii)
- (iv)
- Evaluate $\int x \, \ell nx \, dx$ Evaluate $\int \frac{(a-b)x}{(x-a)(x-b)} \, dx, \quad a > b$ (v)
- Evaluate $\int \frac{dx}{x^2 + 6}$ (vi)
- Solve the differential equation y dx + x dy = 0(vii)
- (viii) Evaluate $|\sec x| dx$
- Find K so that the line joining A(7,3), B(K,-6) and the line joining C(-4,5), D(-6,4)(ix) are parallel.
- (x) Find whether the given point P(5, 8) lies above or below the line 2x - 3y + 6 = 0
- Determine value of P such that the lines 2x 3y 1 = 0, 3x y 5 = 0 and (xi) 3x + Py + 8 = 0 meet at a point.
- Find the lines represented by $3x^2 + 7xy + 2y^2 = 0$ (xii)

(2)

4. Attempt any nine parts.

 $9 \times 2 = 18$

- (i) Graph the solution set of linear inequality in xy plane $3x 2y \ge 6$
- (ii) Find the equation of a circle with ends of a diameter at (-3, 2) and (5, -6)
- (iii) Find the centre and radius of a circle $4x^2 + 4y^2 8x + 12y 25 = 0$
- (iv) Write down the equation of normal to the circle $x^2 + y^2 = 25$ at (4, 3)
- (v) Find the vertex and directrix of $x^2 = 4(y 1)$
- (vi) Write the equation of parabola with focus (-3, 1) and directrix x 2y 3 = 0
- (vii) Find the equation of hyperbola with Foci $(\pm 5, 0)$ and vertex is (3, 0)
- (viii) Find the magnitude of vector $\underline{u} = \underline{i} + j$
- (ix) Find a unit vector in the direction of $\underline{v} = i + 2\underline{j} \underline{k}$
- (x) Find the direction cosines of $\underline{v} = 3\underline{i} j + 2\underline{k}$
- (xi) If $\underline{u} = [2, -3, 1]$, $\underline{v} = [2, 4, 1]$ find the cosine of angle θ between \underline{u} and \underline{v}
- (xii) If $\underline{a} \times \underline{b} = 0$ and $\underline{a} \cdot \underline{b} = 0$, what conclusion can be drawn about $\underline{\underline{a}}$ or \underline{b} ?
- (xiii) Find α so that $\underline{i} \underline{j} + \underline{k}$, $\underline{i} 2\underline{j} 3\underline{k}$ and $3\underline{i} \alpha \underline{j} + 5\underline{k}$ are coplanar.

SECTION-II

NOTE: Attempt any three questions.

 $3 \times 10 = 30$

- 5.(a) If $f(x) = \begin{cases} \frac{\sqrt{2x+5} \sqrt{x+7}}{x-2}, & x \neq 2 \\ K, & x = 2 \end{cases}$ Find the value of K so that f is continuous at x = 2
 - (b) If $x = a\cos^3\theta$, $y = b\sin^3\theta$, show that $a\frac{dy}{dx} + b\tan\theta = 0$
- 6.(a) Evaluate the integral $\int \frac{\sqrt{2}}{\sin x + \cos x} dx$
 - (b) Find the condition that the lines $y = m_1x + c_1$, $y = m_2x + c_2$, $y = m_3x + c_3$ are concurrent.
- 7. (a) Evaluate $\int_{0}^{\pi/4} \frac{\sin x 1}{\cos^2 x} dx$
 - (b) Maximize f(x, y) = 2x + 5y subject to constraints $2y x \le 8$, $x y \le 4$, $x \ge 0$, $y \ge 0$
- 8. (a) Write equations of two tangents from (2, 3) to the circle $x^2 + y^2 = 9$
 - (b) By using vectors prove that $\cos(\alpha + \beta) = \cos\alpha \cos\beta \sin\alpha \sin\beta$
- 9.(a) If $y = (\cos^{-1} x)^2$, prove that $(1 x^2)y_2 xy_1 2 = 0$
 - (b) Show that an equation of parabola with focus at $(a\cos\alpha, a\sin\alpha)$ and directrix $x\cos\alpha + y\sin\alpha + a = 0$ is $(x\sin\alpha y\cos\alpha)^2 = 4a(x\cos\alpha + y\sin\alpha)$

		wwww.arif	rao.com		,01
Paper (21 (A)	Roll No:	[9]
Numbe	w	INTERMEDIATE			
GROU	HEMATICS PAP JP-I				OWED: 30 Minutes MARKS: 20
		for each objective type			
	think is correct, fill th	at bubble in front of th	at question number	er, on bubble s	heet. Use marker
		les. Cutting or filling t Ill be awarded in case B			
	this sheet of OBJECT				s de la companya de l
Q.No.1 (1)	If $f(r) = \sqrt{r+4}$ then	then $f(x^2 + 4)$ is equal	to:		
(1)	(A) $\sqrt{x^2 + 8}$		(C) \sqrt{x}	0	(D) r^2 \circ
(2)		` ' \			
(2)	The function $f(x) = -$	$\frac{2+3x}{2x}$ is not continuous	s at: (A) $x = -3$	(B) $x = -\frac{2}{3}$	(C) $x = 1$ (D) $x =$
(3)	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} =$		f'(x) (B) $f'(a)$	a) (C) f'(0) (D) $f'(x-a)$
(4)	$f(x) = x^{2/3}$, then f	'(8) =	(A) $\frac{1}{2}$	(B) $\frac{2}{3}$ (C) $\frac{1}{3}$ (D) 3
(5)	The derivative of $\frac{x^3}{x^3}$	$\frac{-2x^2}{x^3}$ equals:	(A) $\frac{2}{x^2}$	(B) $\frac{-2}{x^2}$	(C) $\frac{1}{2x^2}$ (D) $\frac{-1}{2x^2}$
(6)	If $f(x) = \tan^{-1} x$, the	ten $f'(\cot x)$ is equal to			
	$(A) \frac{1}{1+x^2}$	(B) $\sin^2 x$	(C) cos	x^2x	(D) sex^2x
(7)	$f(x + \delta x) = \underline{\hspace{1cm}}$		1 60 64		(D) (() I
	(A) $f'(x)dx$		$\int dx$ (C) $f($	(x) + f'(x) dx	(D) $f(x)dx$
(8)	$\int \frac{a}{x\sqrt{x^2 - 1}} dx = \underline{\hspace{1cm}}$				
	(A) $a \tan^{-1} x$	(B) $-a \cos ec^{-1}x$			$(D) \frac{1}{a} \sec^{-1} x + c$
(9)		$\sqrt{a^2 - x^2}$ involves in in			(D)
	(A) $x = a \sin \theta$	(B) $a \sec \theta$	(C) a t		(D) $a = \sin \theta$
(10)	$\int_0^1 \frac{1}{\sqrt{9-x^2}} dx = \underline{\qquad}$	-, '0	$(A) \frac{2}{\pi} \qquad (E$	$3) \frac{-2}{\pi} \qquad (C)$	$\frac{-\pi}{2} \qquad \text{(D) } \frac{\pi}{2}$
(11)		ng is not a solution of the		ities	
	$x + 2y \le 8, \ 2x - 3y$ (A) (1, 0)	$y \le 0, \ 2x + y \ge 2$ (B) (8, 0)	$x \ge 0, y \ge 0$ (C) (0.	. 4)	(D) (3, 0)
(12)		ated, the coordinates of the			
		which axes are translate		2)	(D) (0 C)
(13)	(A) (-3, 2) The equation of horizon	(B) (3, −2)zontal line passing through	(C) (7, gh (-5, 3) is:	-3)	(D) $(-9, 6)$
	(A) x + 5 = 0		(C) 3x	-5y=0	(D) $y - 3 = 0$
(14)		(1, 5) and $(k, 7)$ has a			(D)
(15)	(A) −1 and 2The focus of the parab	(B) 3 and -2 pola $v^2 = 4ax$ is:	(C) 2,	- 3	(D) $-1, -2$
	(A) $(a, 0)$	(B) $(0, a)$	(C) (-	a, 0)	(D) $(0, -a)$
(16)	The eccentricity of $\frac{y^2}{4}$	$\frac{2}{x^2 - x^2} = 1 \text{ equals:}$	(A) $\frac{-2}{\sqrt{5}}$ (B)	$\frac{2}{\sqrt{5}}$ (C)	$\frac{-\sqrt{5}}{2}$ (D) $\frac{\sqrt{5}}{2}$
(17)		obtained by cutting a righ		1	(D) 4
(18)	(A) Sphere If \underline{a} and \underline{b} are two i	(B) A line non-zero vectors, then \underline{a}	$(C) A p$ $\times b =$	lane	(D) A curve
	(A) $-\underline{b} \times \underline{a}$	(B) $\underline{a} \cdot \underline{b}$	(C) - <u>a</u>	$\times -\underline{b}$	(D) $\underline{b} \times \underline{a}$
(19)	Angle between the ve	ctors $\underline{i} + \underline{j}$, $\underline{i} - \underline{j}$ is:	(A) π	(B) $\frac{\pi}{2}$	(C) $\frac{\pi}{4}$ (D) 0
(20)	Projection of <i>a</i> along			2	4
essor di	(A) $\hat{a} \cdot \hat{b}$	(B) <u>a</u> − <u>b</u>	(C) <u>a</u> ·	\hat{b}	(D) $\hat{a} \cdot \underline{b}$

14(Obj)(☎)-2021(A)-18000 (MULTAN)

Number:

4193

INTERMEDIATE PART-II (12th CLASS)

PAPER-II **MATHEMATICS**

OBJECTIVE

TIME ALLOWED: 30 Minutes **MAXIMUM MARKS: 20**

GROUP-I Note: You have four choices for each objective type question as A, B, C and D. The choice which you

think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER.

Q.No.1

Conic are the curves obtained by cutting a right circular cone by: (1)

(B) A line

If \underline{a} and \underline{b} are two non-zero vectors, then $\underline{a} \times \underline{b} = \underline{\hspace{1cm}}$ (2)

(A) $-\underline{b} \times \underline{a}$

(C) $-\underline{a} \times -\underline{b}$

Angle between the vectors $\underline{i} + \underline{j}$, $\underline{i} - \underline{j}$ is: (A) π (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{4}$ (3)

(D) 0

(4)Projection of \underline{a} along \underline{b} is:

(A) $\hat{a} \cdot \hat{b}$

(B) a-b

(C) $a \cdot \hat{b}$

If $f(x) = \sqrt{x+4}$ then $f(x^2+4)$ is equal to: (5)

(B) $\sqrt{x^2 - 8}$

The function $f(x) = \frac{2+3x}{2x}$ is not continuous at: (A) x = -3 (B) x = -3(6)

 $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \underline{\hspace{1cm}}$ (7)

(A) f'(x)

(B) f'(a) (C) f'(0) (D) f'(x-a)

 $f(x) = x^{\frac{2}{3}}$, then f'(8) =(8)

The derivative of $\frac{x^3 + 2x^2}{x^3}$ equals:

If $f(x) = \tan^{-1} x$, then $f'(\cot x)$ is equal to: (10)

(B) $\sin^2 x$

(C) $\cos^2 x$

(12)

(A) $a \tan^{-1} x$

 $(\overline{B}) - a \cos ec^{-1}x + c$

(C) $-a \sec^{-1} x + c$ (D) $\frac{1}{a} \sec^{-1} x + c$

When the expression $\sqrt{a^2 - x^2}$ involves in integration substitute, is: (13)

(14)

(B) $\frac{-2}{2}$ (C) $\frac{-\pi}{2}$ (D) $\frac{\pi}{2}$

Which of the following is not a solution of the system of inequalities (15) $x + 2y \le 8$, $2x - 3y \le 6$, $2x + y \ge 2$ $x \ge 0, y \ge 0$

(A) (1, 0)

(B)(8,0)

(C) (0,4)

(D) (3,0)

When axes are translated, the coordinates of the point (-6, 9) are changed into (-3, 7), (16)find the point through which axes are translated:

(A) (-3, 2)

(B) (3, -2)

(C)(7,-3)

(D) (-9, 6)

The equation of horizontal line passing through (-5, 3) is: (17)

(B) -5x + 3y = 0

(C) 3x - 5y = 0

A line passes through (1, 5) and (k, 7) has a slope k, the values of k is: (18)

(A) -1 and 2

(B) 3 and -2

(C) 2, -3

(D) -1, -2

The focus of the parabola $y^2 = 4ax$ is: (19)

(A) (a, 0)

(C) (-a, 0)

(20) The eccentricity of $\frac{y^2}{4} - x^2 = 1$ equals:

(A) $\frac{-2}{\sqrt{5}}$ (B) $\frac{2}{\sqrt{5}}$ (C) $\frac{-\sqrt{5}}{2}$ (D) $\frac{\sqrt{5}}{2}$

14(Obj)(🏗 🛣)-2021(A)-18000 (MULTAN)

Number:

INTERMEDIATE PART-II (12th CLASS)

MATHEMATICS PAPER-II

GROUP-I

OBJECTIVE

TIME ALLOWED: 30 Minutes

MAXIMUM MARKS: 20

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER.

Q.No.1

(6)

- When the expression $\sqrt{a^2 x^2}$ involves in integration substitute, is: (1)

 $\int \frac{1}{\sqrt{Q_{1}-x^{2}}} dx = \underline{\hspace{1cm}}$ (2)

- (A) $\frac{2}{\pi}$ (B) $\frac{-2}{\pi}$ (C) $\frac{-\pi}{2}$ (D) $\frac{\pi}{2}$

- Which of the following is not a solution of the system of inequalities (3) $x + 2y \le 8$, $2x - 3y \le 6$, $2x + y \ge 2$
 - (A) (1, 0)

(B)(8,0)

- (D) (3,0)
- (4) When axes are translated, the coordinates of the point (-6, 9) are changed into (-3, 7), find the point through which axes are translated:
 - (A) (-3, 2)
- (B) (3, -2)
- (C)(7,-3)
- (5)The equation of horizontal line passing through (-5, 3) is: A line passes through (1, 5) and (k, 7) has a slope k, the values of k is:

 (A) -1 and 2

- (B) 3 and -2The focus of the parabola $y^2 = 4ax$ is: (7)
 - (A) (a, 0)

- (D) (0, -a)

- The eccentricity of $\frac{y^2}{4} x^2 = 1$ equals: (8)

- Conic are the curves obtained by cutting a right circular cone by: (9)
- (B) A line
- (C) A plane
- (D) A curve

- If \underline{a} and \underline{b} are two non-zero vectors, then $\underline{a} \times \underline{b} =$ (10)

- (C) $-\underline{a} \times -\underline{b}$

- (11) Angle between the vectors $\underline{i} + j$, $\underline{i} j$ is:
- (A) π (B) $\frac{\pi}{2}$
- (C) $\frac{\pi}{4}$ (D) 0

- (12) Projection of \underline{a} along \underline{b} is:
- (C) $\underline{a} \cdot \hat{b}$
- (D) $\hat{a} \cdot b$

- If $f(x) = \sqrt{x+4}$ then $f(x^2+4)$ is equal to:

- (C) $\sqrt{x-8}$ (D) x^2-8
- The function $f(x) = \frac{2+3x}{2x}$ is not continuous at: (A) x = -3 (B) $x = -\frac{2}{3}$ (C) x = 1 (D) x = 0
- (15)

- (A) f'(x) (B) f'(a) (C) f'(0) (D) f'(x-a)
- $f(x) = x^{2/3}$, then f'(8) =_____ (16)
- (A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) $\frac{1}{3}$ (D) 3

- (17) The derivative of $\frac{x^3 + 2x^2}{x^3}$ equals:

- (A) $\frac{2}{r^2}$ (B) $\frac{-2}{r^2}$ (C) $\frac{1}{2r^2}$ (D) $\frac{-1}{2r^2}$
- If $f(x) = \tan^{-1} x$, then $f'(\cot x)$ is equal to: (18)
- (B) $\sin^2 x$

- $f(x+\delta x) = \underline{\hspace{1cm}}$ (A) f'(x)dx (B) f(x) f'(x)dx (C) f(x) + f'(x)dx (D) f(x)dx(19)

- $\int \frac{a}{x\sqrt{x^2-1}} dx = \underline{\hspace{1cm}}$ (20)
 - (A) $a \tan^{-1} x$
- (B) $-a \cos ec^{-1}x + c$
- (C) $-a \sec^{-1} x + c$ (D) $\frac{1}{a} \sec^{-1} x + c$

Roll No: _

Number:

4197

INTERMEDIATE PART-II (12th CLASS)

MATHEMATICS **PAPER-II**

GROUP-I

OBJECTIVE

TIME ALLOWED: 30 Minutes

MAXIMUM MARKS: 20

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER.

Q.No.1

If $f(x) = \tan^{-1} x$, then $f'(\cot x)$ is equal to: (1)

(A)
$$\frac{1}{1+x^2}$$

(B)
$$\sin^2 x$$

(C)
$$\cos^2 x$$

(D)
$$sex^2x$$

 $f(x+\delta x) = \underline{\hspace{1cm}}$ (2)

(A)
$$f'(x) dx$$

(B)
$$f(x) - f'(x) dx$$

(C)
$$f(x) + f'(x) dx$$

(D)
$$f(x) dx$$

 $\int \frac{a}{x\sqrt{x^2 - 1}} dx = \underline{\qquad}$ (3)

(A)
$$a \tan^{-1} x$$

$$(B) - a \cos ec^{-1}x + c$$

$$(C) - a \sec^{-1} x + c$$

(B)
$$-a \cos ec^{-1}x + c$$
 (C) $-a \sec^{-1}x + c$ (D) $\frac{1}{a} \sec^{-1}x + c$

When the expression $\sqrt{a^2 - x^2}$ involves in integration substitute, is: (4)

(A)
$$x = a \sin \theta$$

(B)
$$a \sec \theta$$

(C)
$$a \tan \theta$$

(D)
$$a = \sin \theta$$

 $\int_{0}^{1} \frac{1}{\sqrt{9 - r^2}} dx = \underline{\hspace{1cm}}$

$$(C) \frac{-2}{\pi}$$

(D)
$$\frac{\pi}{2}$$

Which of the following is not a solution of the system of inequalities (6) $x + 2y \le 8$, $2x - 3y \le 6$, $2x + y \ge 2$ $x \ge 0, y \ge 0$

(C)
$$(0, 4)$$

When axes are translated, the coordinates of the point (-6, 9) are changed into (-3, 7), (7)find the point through which axes are translated:

$$(A) (-3, 2)$$

(B)
$$(3, -2)$$

$$(C)(7,-3)$$

$$(D) (-9, 6)$$

The equation of horizontal line passing through (-5, 3) is: (8)

(A)
$$x + 5 = 0$$

$$(B) -5x + 3y = 0$$

$$(C) 3x - 5y = 0$$

A line passes through (1, 5) and (k, 7) has a slope k, the values of k is: (9)

$$(A) -1 \text{ and } 2$$

(B)
$$3$$
 and -2

(C)
$$2, -3$$

(D)
$$-1, -2$$

(10) The focus of the parabola $y^2 = 4ax$ is:

(B)
$$(0, a)$$

(C)
$$(-a, 0)$$

$$(D)$$
 $(0, -a)$

(A) $\frac{-2}{\sqrt{5}}$ (B) $\frac{2}{\sqrt{5}}$ (C) $\frac{-\sqrt{5}}{2}$ (D) $\frac{\sqrt{5}}{2}$ (11) The eccentricity of $\frac{y^2}{x^2} - x^2 = 1$ equals: Conic are the curves obtained by cutting a right circular cone by: (12)

(A) Sphere

If \underline{a} and \underline{b} are two non-zero vectors, then $\underline{a} \times \underline{b} = \underline{\hspace{1cm}}$

$$(A) = h \times a$$

(B)
$$a \cdot b$$

$$\overline{(C)} - \underline{a} \times -\underline{b}$$

(D)
$$\underline{b} \times \underline{b}$$

Angle between the vectors $\underline{i} + j$, $\underline{i} - j$ is: (14)

(A)
$$\pi$$
 (B) $\frac{\pi}{2}$

$$(C)^{\pi}$$

(15) Projection of \underline{a} along \underline{b} is:

(A)
$$\hat{a} \cdot \hat{b}$$

(B)
$$\underline{a} - \underline{b}$$

(C)
$$\underline{a} \cdot \hat{b}$$

(D)
$$\vec{a} \cdot \underline{t}$$

If $f(x) = \sqrt{x+4}$ then $f(x^2+4)$ is equal to:

(A)
$$\sqrt{x^2 + 8}$$

(B)
$$\sqrt{x^2 - 8}$$

(C)
$$\sqrt{x-8}$$
 (D) x^2-8

(D)
$$x^2 - 8$$

The function $f(x) = \frac{2+3x}{2x}$ is not continuous at: (A) x = -3 (B) $x = -\frac{2}{3}$ (C) x = 1 (D) x = 0

(18)
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \underline{\hspace{1cm}}$$

(A)
$$f'(x)$$

(B)
$$f'(a)$$

C)
$$f'(0)$$

(A)
$$f'(x)$$
 (B) $f'(a)$ (C) $f'(0)$ (D) $f'(x-a)$

(D) 0

(19) $f(x) = x^{\frac{2}{3}}$, then f'(8) =_____

(A)
$$\frac{1}{2}$$
 (B) $\frac{2}{3}$ (C) $\frac{1}{3}$ (D) 3

$$\frac{2}{3}$$

(C)
$$\frac{1}{3}$$

The derivative of $\frac{x^3 + 2x^2}{x^3}$ equals: (20)

$$(A) \frac{2}{x^2}$$

(B)
$$\frac{-2}{x^2}$$

(A)
$$\frac{2}{r^2}$$
 (B) $\frac{-2}{r^2}$ (C) $\frac{1}{2r^2}$ (D) $\frac{-1}{2r^2}$

2021 (A)

Roll No:

INTERMEDIATE PART-II (12th CLASS)

MATHEMATICS PAPER-II

SUBJECTIVE

TIME ALLOWED: 2.30 Hours MAXIMUM MARKS: 80

NOTE: Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.

 $8 \times 2 = 16$

(i) Express perimeter P of a square as a function of its area A.

(ii) If
$$f(x) = \sqrt{x+1}$$
, $g(x) = \frac{1}{x^2}$ find $f \circ g(x)$, $g \circ f(x)$

(iii) Evaluate
$$\lim_{x \to -1} \frac{x^3 - x}{x + 1}$$

(iv) Evaluate
$$\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x}$$

(v) Differentiate
$$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$$
 w.r.t. x

(vi) Find
$$\frac{dy}{dx}$$
 if $x = 1 - t^2$, $y = 3t^2 - 2t^3$

(vii) Prove that
$$\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$$

(viii) Find
$$\frac{dy}{dx}$$
 if $y = x \cos y$

(ix) Find
$$\frac{dy}{dx}$$
 if $y = \frac{x}{\ell nx}$

(x) Find
$$f'(x)$$
 if $f(x) = e^{\sqrt{x-1}}$

(xi) Find
$$y_2$$
 if $y = x^2 e^{-x}$

(xii) Find Maclaurin series for $\sin x$.

3. Attempt any eight parts.

 $8 \times 2 = 16$

(i) Use differentials to find dy and δy if $y = x^2 + 2x$, x changes from 2 to 1.8.

(ii) Find
$$\int \frac{1-\sqrt{x}}{\sqrt{x}} dx$$

(iii) Find
$$\int \frac{1-x^2}{1+x^2} dx$$

(iv) Find
$$\int \frac{\cot \sqrt{x}}{\sqrt{x}} dx$$

(v) Find
$$\int \frac{\sqrt{2}}{\sin x + \cos x} dx$$

(vi) Find
$$\int x \, \ell nx \, dx$$

(vii) Solve the differential equation
$$(e^x + e^{-x})\frac{dy}{dx} = e^x - e^{-x}$$

(viii) Find
$$\int_{0}^{\pi/3} \cos^2 \theta \sin \theta \ d\theta$$

(ix) By means of slope, show that
$$(-1, -3)$$
, $(1, 5)$, $(2, 9)$ lie on the same line.

(x) Check whether the point
$$(-7, 6)$$
 lies above or below the line $4x + 3y - 9 = 0$

(xi) Check whether the lines
$$12x + 35y - 7 = 0$$
 and $105x - 36y + 11 = 0$ are parallel or perpendicular.

(xii) Express
$$15y - 8x + 3 = 0$$
 in normal form.

(2)

Attempt any nine parts.

 $9 \times 2 = 18$

- (i) Graph the solution set of $3x 2y \ge 6$
- (ii) Find an equation of the circle with ends of a diameter at (-3, 2) and (5, -6)
- (iii) Find the radius of the circle $5x^2 + 5y^2 + 14x + 12y 10 = 0$
- (iv) Find the length of the tangent drawn from the point (-5, 4) to the circle $5x^2 + 5y^2 10x + 15y 131 = 0$
- (v) Find the focus and directrix of the parabola $x^2 = 4(y-1)$
- (vi) Find the foci and eccentricity of $\frac{y^2}{16} \frac{x^2}{9} = 1$
- (vii) Write down the equation of tangent to $3x^2 + 3y^2 + 5x 13y + 2 = 0$ at $\left(1, \frac{10}{3}\right)$
- (viii) Find the magnitude of the vector $\vec{u} = \hat{i} + \hat{j}$
- (ix) Find a unit vector in the direction of $\underline{v} = 2\underline{i} \underline{j}$
- (x) Let $\underline{v} = 3\underline{i} 2\underline{j} + 2k$, $\underline{w} = 5\underline{i} \underline{j} + 3\underline{k}$ find $\underline{v} 3\underline{w}$
- (xi) Find α so that $\left| \alpha \underline{i} + (\alpha + 1) \underline{j} + 2\underline{k} \right| = 3$
- (xii) Find the direction cosines of $\underline{v} = 3\underline{i} j + 2\underline{k}$
- (xiii) Find a vector of lengths 5 in the direction opposite that of v = i 2j + 3k

SECTION-II

NOTE: Attempt any three questions.

 $3\times10=30$

- 5.(a) Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1 t^2}{1 + t^2}$, $y = \frac{2t}{1 + t^2}$
- (b) If $f(x) = \begin{cases} \frac{\sqrt{2x+5} \sqrt{x+7}}{x-2}, & x \neq 2 \\ K, & x = 2 \end{cases}$ find value of K so that f is continuous at x = 2
- 6.(a) Determine value of p such that the lines 2x 3y 1 = 0, 3x y 5 = 0 and 3x + py + 8 = 0 meet at a point.
 - (b) Evaluate $\int x^3 e^{5x} dx$
- 7. (a) Evaluate $\int_{-1}^{2} (x + |x|) dx$
 - (b) Minimize z = 2x + y; subject to the constraints $x + y \ge 3$; $7x + 5y \le 35$; $x \ge 0$, $y \ge 0$
- 8. (a) Show that the circles $x^2 + y^2 + 2x 2y 7 = 0$ and $x^2 + y^2 6x + 4y + 9 = 0$ touch externally.
 - (b) A force of magnitude 6 units acting parallel to $2\underline{i} 2\underline{j} + \underline{k}$, displaces, the point of application from (1, 2, 3) to (5, 3, 7). Find work done.
- 9.(a) A box with a square base and open top is to have a volume of 4 cubic *dm*. Find the dimensions of the box which will require the least material.
 - (b) Find the centre, foci and vertices of the following $9x^2 12x y^2 2y + 2 = 0$

4192

wwww.arifrao.com 2021 (A)

Roll No:

INTERMEDIATE PART-II (12th CLASS)

Number:

TIME ALLOWED: 30 Minutes

MATHEMATICS PAPER-II **GROUP-II**

OBJECTIVE

MAXIMUM MARKS: 20

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER.

Q.No.1

The perimeter P of a square as a function of its area A is: (1)

(A)
$$P = \sqrt{A}$$

(B)
$$P = 2\sqrt{A}$$

(C)
$$P = 3\sqrt{A}$$
 (D) $P = 4\sqrt{A}$

D)
$$P = 4\sqrt{A}$$

$$\lim_{x \to 3} \frac{x - 3}{\sqrt{x} - \sqrt{3}}$$

(A)
$$\sqrt{3}$$

(B)
$$2\sqrt{3}$$

(C)
$$\frac{1}{\sqrt{3}}$$

(A)
$$\sqrt{3}$$
 (B) $2\sqrt{3}$ (C) $\frac{1}{\sqrt{3}}$ (D) $\frac{1}{2\sqrt{3}}$

If 3x + 4y - 5 = 0, then $\frac{dy}{dx} =$ (3)

(A)
$$\frac{4}{3}$$

(A)
$$\frac{4}{3}$$
 (B) $-\frac{4}{3}$ (C) $\frac{3}{4}$

(C)
$$\frac{3}{4}$$

(D)
$$-\frac{3}{4}$$

(4) $\frac{d}{dx}(\sqrt{\cot x}) =$

(A)
$$\frac{1}{2\sqrt{\cot x}}$$

(B)
$$\frac{\cos ec^2x}{2\sqrt{\cot x}}$$

(C)
$$\frac{-\cos ec^2}{2\sqrt{\cot x}}$$

(A)
$$\frac{1}{2\sqrt{\cot x}}$$
 (B) $\frac{\cos ec^2x}{2\sqrt{\cot x}}$ (C) $\frac{-\cos ec^2x}{2\sqrt{\cot x}}$ (D) $\frac{2\cos ec^2x}{\sqrt{\cot x}}$

If $f(x) = \tan^{-1} x$, then $f'(\cot x) =$ (A) $\sin^2 x$ (B) $\cos^2 x$ (C) $\sec^2 x$ (D) $\frac{1}{1+x^2}$ (5)

(A)
$$\sec^2 x$$
 (B) $\cos ec^2 x$ (C) $-\cos ec^2 x$ (D) $\tan^2 x$

 $\frac{d}{dx}(-\cot x) =$ $a^x dx =$ (7)

$$(\Lambda) \alpha^{x} + \alpha$$

(C)
$$a^x \cdot \ell na + c$$

(A)
$$a^x + c$$
 (B) $a^x + \ln a + c$ (C) $a^x \cdot \ln a + c$ (D) $a^x \cdot \frac{1}{\ln a} + c$

The anti-derivative of $\frac{1}{(1+x^2)\tan^{-1}x}$ is: (8)

(A)
$$\ln(\tan^{-1}x) + c$$

(B)
$$\ln(1+x^2) + e^{-x^2}$$

(C)
$$2(\tan^{-1}x)^2 +$$

(B)
$$\ln(1+x^2) + c$$
 (C) $2(\tan^{-1}x)^2 + c$ (D) $\frac{1}{2}(\tan^{-1}x)^2 + c$

(9)Suitable substitution for solving |-

(A)
$$x = a \sin \theta$$

(B)
$$x = a \tan \theta$$

(C)
$$x = a \sec \theta$$

(D)
$$x = a \cos \theta$$

(10)
$$\int_{0}^{\pi/4} \sec^2 x \, dx =$$

(13)

$$(C)$$
 2

(D)
$$\frac{1}{2}$$

(11)

The point (3, -8) lies in the ____ quadrant. (12)The lines ℓ_1 and ℓ_2 with slopes m_1 and m_2 respectively, are parallel if:

(A)
$$1^{5}$$

(B)
$$2^{nq}$$

$$(C) 3^{ra} (D)$$

(D)
$$m_1 + m_2 = 0$$

(B) $m_1 = m_2$ (C) $m_1 m_2 = -1$ The point (2, 1) is not in the solution of the inequality: (14)

(A)
$$2x + y > 3$$

(B)
$$2x + y > 4$$

(C)
$$2x + v < 3$$

(D)
$$2x + y > 1$$

Centre of the circle $x^2 + y^2 + 7x - 3y = 0$, is: (15)

$$(\Lambda)$$
 $(7, 3)$

(B)
$$\left(-\frac{7}{2}, \frac{3}{2}\right)$$

$$(C)(-7,3)$$

(D)
$$(\frac{7}{2}, -\frac{3}{2})$$

The equation of directrix of the parabola $x^2 = 5y$ is: (16)

(A)
$$x + \frac{5}{4} = 0$$

(B)
$$x - \frac{5}{4} = 0$$
 (C) $y + \frac{5}{4} = 0$

(C)
$$y + \frac{5}{4} = 0$$

(D)
$$y - \frac{5}{4} = 0$$

The length of latus-rectum of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, is: (17)

(A)
$$\frac{a^2}{2h}$$

(B)
$$\frac{b^2}{2a}$$

(C)
$$\frac{b^2}{a}$$

(D)
$$\frac{2b^2}{a}$$

If $\underline{u} = 2\alpha \underline{i} + \underline{j} - \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 4\underline{k}$, are perpendicular, then $\alpha =$ (18)

(A)
$$-\frac{4}{2}$$

(B)
$$\frac{4}{2}$$

(C)
$$\frac{3}{4}$$

The vectors u, \underline{v} and \underline{w} are coplanar if: (19)

(A)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 0$$

(B)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 1$$

(C)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 2$$

(D)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 3$$

Work done by a constant force \vec{F} during a displacement \vec{d} is equal to: (20)

(A)
$$\vec{F} \times \vec{d}$$

(B)
$$\vec{d} \times \vec{F}$$

(C)
$$\vec{F} + \vec{d}$$

(D)
$$\vec{F} \cdot \vec{d}$$

16(Obj)(🖈)-2021(A)-6000 (MULTAN)

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker

or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER.

Q.No.1

The length of latus-rectum of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, is: (1)

(A)
$$\frac{a^2}{2b}$$
 (B) $\frac{b^2}{2a}$ (C) $\frac{b^2}{a}$

If $\underline{u} = 2\alpha \underline{i} + j - \underline{k}$ and $\underline{v} = \underline{i} + \alpha j + 4\underline{k}$, are perpendicular, then $\alpha =$ (2)

The vectors u, \underline{v} and \underline{w} are coplanar if: (3)(A) $u \cdot v \times w = 0$ (B) $\underline{u} \cdot \underline{v} \times \underline{w} = 1$ (C) $\underline{u} \cdot \underline{v} \times \underline{w} = 2$

Work done by a constant force \vec{F} during a displacement \vec{d} is equal to: (4)(B) $\vec{d} \times \vec{F}$ (C) $\vec{F} + \vec{d}$

The perimeter P of a square as a function of its area A is: (5)(A) $P = \sqrt{A}$ (B) $P = 2\sqrt{A}$ (C) $P = 3\sqrt{A}$

 $\lim_{x \to 3} \frac{x-3}{\sqrt{x}-\sqrt{3}}$ (6)

If 3x + 4y - 5 = 0, then $\frac{dy}{dx} =$ (7)

(A) $\frac{1}{2\sqrt{\cot x}}$ (B) $\frac{\cos ec^2x}{2\sqrt{\cot x}}$ (C) $\frac{-\cos ec^2x}{2\sqrt{\cot x}}$ (D) $\frac{2\cos ec^2x}{\sqrt{\cot x}}$ (8)

(A) $\sin^2 x$ (B) $\cos^2 x$ (C) $\sec^2 x$ (D) $\frac{1}{1+x^2}$ If $f(x) = \tan^{-1} x$, then $f'(\cot x) =$ (9)

(A) $\sec^2 x$ (B) $\csc^2 x$ (C) $-\csc^2 x$ (D) $\tan^2 x$ $\frac{d}{dx}(-\cot x) =$ (10)

(B) $a^x + \ell na + c$ (C) $a^x \cdot \ell na + c$ (D) $a^x \cdot \frac{1}{\ell na} + c$ $a^x dx =$ (11)

(12)

(B) $\ln(1+x^2) + c$ (C) $2(\tan^{-1}x)^2 + c$ (D) $\frac{1}{2}(\tan^{-1}x)^2 + c$ (A) $\ln(\tan^{-1}x) + c$

Suitable substitution for solving $\int \frac{1}{x\sqrt{x^2-a^2}} dx$ is: (13)(C) $x = a \sec \theta$ (B) $x = a \tan \theta$ (D) $x = a \cos \theta$

 $\int \sec^2 x \ dx =$ (A) 0 (B) 1 (C) 2 (14)

If (3, 5) is the mid-point of (5, a) and (1, 7), then a =______ (A) 3 (B) The point (3, -8) lies in the _____ quadrant. (A) 1^{st} (B) 2^{nd} (C) 3^{rd} (15)

(16)

The lines ℓ_1 and ℓ_2 with slopes m_1 and m_2 respectively, are parallel if: (17)

(A) $m_1 m_2 = 1$ (B) $m_1 = m_2$ (C) $m_1 m_2 = -1$ (D) $m_1 + m_2 = 0$ The point (2, 1) is not in the solution of the inequality: (18)

(B) 2x + y > 4(C) 2x + y < 3(D) 2x + y > 1

Centre of the circle $x^2 + y^2 + 7x - 3y = 0$, is: (19)(B) $\left(-\frac{7}{2}, \frac{3}{2}\right)$ (C) $\left(-7, 3\right)$ (D) $(\frac{7}{2}, -\frac{3}{2})$ (A) (7, -3)

The equation of directrix of the parabola $x^2 = 5y$ is: (20)

(B) $x - \frac{5}{4} = 0$ (C) $y + \frac{5}{4} = 0$ (A) $x + \frac{5}{4} = 0$

Paper	Code	WWW	w.arifrac 2021 (A)		Roll No:	1,8
Numbe	and the second second	INTERMEDI				
MAC	HEMATICS PAP					WED: 30 Minute:
GRO			OBJEC	TIVE N	AXIMUM I	MARKS: 20
Note:	You have four choices think is correct, fill th or pen to fill the bubb question. No credit wi this sheet of OBJECT	at bubble in fron les. Cutting or fi ll be awarded in	t of that que lling two or	stion number more bubbles	, on bubble sh will result in	eet. Use marker zero mark in that
Q.No.1	12					
(1)	$\int a^x dx =$	(A) $a^x + c$	(B) $a^x + a^x$	2na + c (C)	$a^x \cdot \ell na + c$	(D) $a^x \cdot \frac{1}{\ell na} + c$
(2)	The anti-derivative o					
(2)	(A) $\ln(\tan^{-1}x) + c$				$(D)^{2} + c$	$\frac{1}{2}(\tan^{-1}x)^2 + c$
(3)	Suitable substitution	¥				
		(B) $x = a$ ta	$n\theta$ (C)	$x = a \sec \theta$	(I	$)) x = a \cos \theta$
(4)	$\int_{0}^{\pi/4} \sec^2 x \ dx =$	(A)	0 (B)) 1 (0	C) 2 (I	$\frac{1}{2}$
(5)	If (3, 5) is the mid-po	point of $(5, a)$ and	(1, 7), then	1 <i>a</i> =	(A) 3 (B) 5	(C) 7 (D) 9
(6) (7)	The point $(3, -8)$ lies					(D) 4 th
(8)	The lines ℓ_1 and ℓ_2 (A) $m_1 m_2 = 1$ The point (2, 1) is no	(B) $m_1 = m_2$	(C)	$m_1 m_2 = -1$	ranerii: (E	$0) \ m_1 + m_2 = 0$
	(A) 2x + y > 3	(B) $2x + y$:	> 4 (C)	2x + y < 3	(Γ	2x + y > 1
(9)	Centre of the circle x^2 (A) $(7, -3)$	$+ y^2 + 7x - 3y =$ (B) $\left(-\frac{7}{2}, \frac{3}{2}\right)$	0, is:	V(-7.3)	(T	(7/2, -3/2)
(10)	The equation of direct		7	,, ,,	(2	/ \/2' /2/
	(A) $x + \frac{5}{4} = 0$	(B) $x - \frac{5}{4}$	=0 (C)		(D	$y - \frac{5}{4} = 0$
(11)	The length of latus-re		a b			
(10)	(A) $\frac{a^2}{2b}$ If $\underline{u} = 2\alpha \underline{i} + \underline{j} - \underline{k}$ a (A) $-\frac{4}{3}$	$(B) \frac{b^2}{2a}$	(C)	$\frac{b^2}{a}$	(D	$) \frac{2b^2}{a}$
(12)	If $\underline{u} = 2\alpha \underline{i} + \underline{j} - k$	and $\underline{v} = \underline{i} + \alpha \underline{j} + \alpha \underline{j}$	$4\underline{k}$, are perpe	ndicular, then	α =	
(12)	$(A) = \frac{4}{3}$	(B) $\frac{4}{3}$	(C)	3/4	(D) 4
(13)	The vectors u , \underline{v} and (A) $u \cdot v \times w = 0$	\underline{w} are coplanar if		<i>u</i> . u v . u = 2	(D)
(14)	Work done by a constant (A) $\vec{F} \times \vec{d}$		1 2 17	ent \bar{d} is equal	to:	$) \ \underline{u} \cdot \underline{v} \times \underline{w} = 3$
(15)	The perimeter P of a	8 /	n of its area	A is:) $\vec{F} \cdot \vec{d}$
(16)	$\lim_{x \to 3} \frac{x - 3}{\sqrt{x} - \sqrt{3}}$	(3) 1 2 1			(C) $\frac{1}{\sqrt{3}}$	
(17)	If $3x + 4y - 5 = 0$, the	hen $\frac{dy}{dx} =$	(A) $\frac{4}{3}$	(B) $-\frac{4}{3}$	(C) $\frac{3}{4}$	(D) $-\frac{3}{4}$
(18)	$\frac{d}{dx}(\sqrt{\cot x}) =$	$(A) - \frac{1}{2}$	$\frac{1}{2\sqrt{\cot x}}$ (I	$3) \frac{\cos ec^2 x}{2\sqrt{\cot x}}$	(C) $\frac{-\cos ec^2 x}{2\sqrt{\cot x}}$	(D) $\frac{2\cos ec^2x}{\sqrt{\cot x}}$
(19)	If $f(x) = \tan^{-1} x$, the				- • • • • • •	Vection
(20)	$\frac{d}{dx}(-\cot x) =$				C) $-\cos ec^2x$	

(A) $\sec^2 x$ (B) $\cos ec^2 x$ (C) $-\cos ec^2 x$ (D) $\tan^2 x$

MATHEMATICS PAPER-II **GROUP-II**

OBJECTIVE

TIME ALLOWED: 30 Minutes **MAXIMUM MARKS: 20**

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER.

Q.No.1

(1)
$$\frac{d}{dx}(\sqrt{\cot x}) =$$
 (A) $\frac{1}{2\sqrt{\cot x}}$ (B) $\frac{\cos ec^2x}{2\sqrt{\cot x}}$ (C) $\frac{-\cos ec^2x}{2\sqrt{\cot x}}$ (D) $\frac{2\cos ec^2x}{\sqrt{\cot x}}$

(2) If
$$f(x) = \tan^{-1} x$$
, then $f'(\cot x) =$ (A) $\sin^2 x$ (B) $\cos^2 x$ (C) $\sec^2 x$ (D) $\frac{1}{1+x^2}$

(3)
$$\frac{d}{dx}(-\cot x) =$$
 (A) $\sec^2 x$ (B) $\csc^2 x$ (C) $-\csc^2 x$ (D) $\tan^2 x$

(4)
$$\int a^x dx =$$
 (A) $a^x + c$ (B) $a^x + \ell na + c$ (C) $a^x \cdot \ell na + c$ (D) $a^x \cdot \frac{1}{\ell na} + c$

(5) The anti-derivative of
$$\frac{1}{(1+x^2)\tan^{-1}x}$$
 is:

(A)
$$\ln(\tan^{-1}x) + c$$
 (B) $\ln(1+x^2) + c$ (C) $2(\tan^{-1}x)^2 + c$ (D) $\frac{1}{2}(\tan^{-1}x)^2 + c$

(6) Suitable substitution for solving
$$\int \frac{1}{x\sqrt{x^2 - a^2}} dx$$
 is:
(A) $x = a \sin \theta$ (B) $x = a \tan \theta$ (C) $x = a \sec \theta$

(7)
$$\int_{-\infty}^{\pi/4} \sec^2 x \, dx =$$
 (A) 0 (B) 1 (C) 2 (D) $\frac{1}{2}$

(8) If
$$(3, 5)$$
 is the mid-point of $(5, a)$ and $(1, 7)$, then $a =$ _____ (A) 3 (B) 5 (C) 7 (D) 9 (P) The point $(3, -8)$ lies in the _____ quadrant. (A) 1st (B) 2nd (C) 3rd (D) 4th

(9) The point
$$(3, -8)$$
 lies in the ____ quadrant. (A) 1^{st} (B) 2^{nd} (C) 3^{rd} (D) 4^{th}

(10) The lines
$$\ell_1$$
 and ℓ_2 with slopes m_1 and m_2 respectively, are parallel if:

(A) $m_1 m_2 = 1$

(B) $m_2 = m_2$

(C) $m_1 m_2 = -1$

(A)
$$m_1 m_2 = 1$$
 (B) $m_1 = m_2$ (C) $m_1 m_2 = -1$

(D)
$$m_1 + m_2 = 0$$

(D) $x = a \cos \theta$

(11) The point
$$(2, 1)$$
 is not in the solution of the inequality:

(A)
$$2x + y > 3$$
 (B) $2x + y > 4$

(C)
$$2x + y < 3$$

(D)
$$2x + y > 1$$

(12) Centre of the circle
$$x^2 + y^2 + 7x - 3y = 0$$
, is:
(A) $(7, -3)$ (B) $\left(-\frac{7}{2}, \frac{3}{2}\right)$

(A)
$$(7, -3)$$

(A) $x = a \sin \theta$

(B)
$$\left(-\frac{7}{2}, \frac{3}{2}\right)$$

$$(C)(-7,3)$$

(D)
$$(\frac{7}{2}, -\frac{3}{2})$$

(13) The equation of directrix of the parabola
$$x^2 = 5y$$
 is:

(A)
$$x + \frac{5}{4} = 0$$

(B)
$$x - \frac{5}{4} = 0$$

(C)
$$y + \frac{5}{4} = 0$$

(D)
$$y - \frac{5}{4} = 0$$

(14) The length of latus-rectum of hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, is:

(A)
$$\frac{a^2}{2b}$$

(B)
$$\frac{b^2}{2a}$$

(C)
$$\frac{b^2}{a}$$

(D)
$$\frac{2b^2}{a}$$

(15) If
$$\underline{u} = 2\alpha \underline{i} + \underline{j} - \underline{k}$$
 and $\underline{v} = \underline{i} + \alpha \underline{j} + 4\underline{k}$, are perpendicular, then $\alpha =$

(A)
$$-\frac{4}{3}$$

(B)
$$\frac{4}{3}$$

(C)
$$\frac{3}{4}$$

(16) The vectors
$$\underline{u}$$
, \underline{v} and \underline{w} are coplanar if:

(A)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 0$$

(B)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 1$$

(C)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 2$$

(D)
$$\underline{u} \cdot \underline{v} \times \underline{w} = 3$$

(17) Work done by a constant force
$$\vec{F}$$
 during a displacement \vec{d} is equal to:

(A)
$$\vec{F} \times \vec{d}$$

(B)
$$\vec{d} \times \vec{F}$$

(C)
$$\vec{F} + \vec{d}$$

(D)
$$\vec{F} \cdot \vec{d}$$

(18) The perimeter
$$P$$
 of a square as a function of its area A is:

$$(\Lambda) D = \sqrt{\Lambda}$$

(B)
$$P = 2\sqrt{A}$$

ts area
$$A$$
 is:
(C) $P = 3\sqrt{A}$

(D)
$$P = 4\sqrt{A}$$

(19)
$$\lim_{x \to 3} \frac{x - 3}{\sqrt{x} - \sqrt{3}}$$

(A)
$$\sqrt{3}$$

(B)
$$2\sqrt{3}$$

(C)
$$\frac{1}{\sqrt{3}}$$

(A)
$$\sqrt{3}$$
 (B) $2\sqrt{3}$ (C) $\frac{1}{\sqrt{3}}$ (D) $\frac{1}{2\sqrt{3}}$

(20) If
$$3x + 4y - 5 = 0$$
, then $\frac{dy}{dx} =$

(A)
$$\frac{4}{3}$$
 (B) $-\frac{4}{3}$

(C)
$$\frac{3}{2}$$